13 resultados para C. ALBICANS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Candida includes different species that have the potential to invade and colonize the human body and C. albicans is the most common cause of skin, nail and mucous infections. The increasing resistance against antifungal drugs has renewed the search for new treatment procedures and antimicrobial photodynamic inactivation (PDI) is a propitious candidate. Hypericin (HY) has several wanted properties to be used as a photosensitizer in this technique including a high quantum yield of singlet oxygen generation, a high extinction coefficient near 600 nm, and a relatively low dark toxicity. Although the phototoxicity of HY on several tumor cells has been reported, the data concerning its photoactivity on microorganisms are scarce. The aim of this study was to obtain the experimental parameters to achieve an acceptable selective hypericinphotoinactivation of two species of Candida comparing with fibroblasts and epithelial cells which are the constituents of some potential host tissues, such mucosas, skin and cavities. Microorganisms and cells were incubated with the same HY concentrations and short incubation time followed by irradiation with equal dose of light. The best conditions to kill just Candida were very low HY concentration (0.1-0.4 mu g ml(-1)) incubated by 10 min and irradiated with LED 590 nm with 6 J cm(-2).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study describes the association of curcumin with light emitting diode (LED) for the inactivation of Candida albicans. Suspensions of Candida were treated with nine curcumin concentrations and exposed to LED at different fluences. The protocol that showed the best outcomes for Candida inactivation was selected to evaluate the effect of the preirradiation time (PIT) on photodynamic therapy (PDT) effectiveness, the uptake of curcumin by C. albicans cells and the possible involvement of singlet oxygen in the photodynamic action. Curcumin-mediated PDT was also assessed against biofilms. In addition to the microbiological experiments, similar protocols were tested on a macrophage cell line and the effect was evaluated by Methyltetrazolium assay (MTT) and SEM analysis. The optical properties of curcumin were investigated as a function of illumination fluence. When compared with the control group, a statistically significant reduction in C. albicans viability was observed after PDT (P < 0.05), for both planktonic and biofilm cultures. Photodynamic effect was greatly increased with the presence of curcumin in the surrounding media and the PIT of 20 min improved PDT effectiveness against biofilms. Although PDT was phototoxic to macrophages, the therapy was more effective in inactivating the yeast cell than the defense cell. The spectral changes showed a high photobleaching rate of curcumin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

P>Although photodynamic therapy (PDT) has shown great promise for the inactivation of Candida species, its effectiveness against azole-resistant pathogens remains poorly documented. This in vitro study describes the association of Photogem (R) (Photogem, Moscow, Russia) with LED (light emitting diode) light for the photoinactivation of fluconazole-resistant (FR) and American Type Culture Collection (ATCC) strains of Candida albicans and Candida glabrata. Suspensions of each Candida strain were treated with five Photogem (R) concentrations and exposed to four LED light fluences (14, 24, 34 or 50 min of illumination). After incubation (48 h at 37 degrees C), colonies were counted (CFU ml-1). Single-species biofilms were generated on cellulose membrane filters, treated with 25.0 mg l-1 of Photogem (R) and illuminated at 37.5 J cm-2. The biofilms were then disrupted and the viable yeast cells present were determined. Planktonic suspensions of FR strains were effectively killed after PDT. It was observed that the fungicidal effect of PDT was strain-dependent. Significant decreases in biofilm viability were observed for three strains of C. albicans and for two strains of C. glabrata. The results of this investigation demonstrated that although PDT was effective against Candida species, fluconazole-resistant strains showed reduced sensitivity to PDT. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to research Candida dubliniensis among isolates present in a Brazilian yeast collection and to evaluate the main phenotypic methods for discrimination between C. albicans and C. dubliniensis from oral cavity. A total of 200 isolates, presumptively identified as C. albicans or C. dubliniensis obtained from heart transplant patients under immunosuppressive therapy, tuberculosis patients under antibiotic therapy, HIV-positive patients under antiretroviral therapy, and healthy subjects, were analyzed using the following phenotypic tests: formation and structural arrangement of chlamydospores on corn meal agar, casein agar, tobacco agar, and sunflower seed agar; growth at 45 degrees C; and germ tube formation. All strains were analyzed by polymerase chain reaction (PCR). In a preliminary screen for C. dubliniensis, 48 of the 200 isolates on corn meal agar, 30 of the 200 on casein agar, 16 of the 200 on tobacco agar, and 15 of the 200 on sunflower seed agar produced chlamydoconidia; 27 of the 200 isolates showed no or poor growth at 45 degrees C. All isolates were positive for germ tube formation. These isolates were considered suggestive of C. dubliniensis. All of them were subjected to PCR analysis using C. dubliniensis-specific primers. C. dubliniensis isolates were not found. C. dubliniensis isolates were not recovered in this study done with immunocompromised patients. Sunflower seed agar was the medium with the smallest number of isolates of C. albicans suggestive of C. dubliniensis. None of the phenotypic methods was 100% effective for discrimination between C. albicans and C. dubliniensis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The correlation between the microdilution (MD), Etest (R) (ET), and disk diffusion (DD) methods was determined for amphotericin B, itraconazole and fluconazole. The minimal inhibitory concentration (MIC) of those antifungal agents was established for a total of 70 Candida spp. isolates from colonization and infection. The species distribution was: Candida albicans (n = 27), C. tropicalis (n = 17), C. glabrata (n = 16), C. parapsilosis (n = 8), and C. lusitaniae (n = 2). Non-Candida albicans Candida species showed higher MICs for the three antifungal agents when compared with C. albicans isolates. The overall concordance (based on the MIC value obtained within two dilutions) between the ET and the MD method was 83% for amphotericin B, 63% for itraconazole, and 64% for fluconazole. Considering the breakpoint, the agreement between the DD and MD methods was 71% for itraconazole and 67% for fluconazole. The DD zone diameters are highly reproducible and correlate well with the MD method, making agar-based methods a viable alternative to MD for susceptibility testing. However, data on agar-based tests for itraconazole and amphotericin B are yet scarce. Thus, further research must still be carded out to ensure the standardization to other antifungal agents. J. Clin. Lab. Anal. 23:324-330, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The in vitro antifungal activity of six thioureido substituted amines (P1-P6) was evaluated against Candida species, including Candida albicans, C. glabrata, C. krusei and C. parapsilosis. These tri- and tetra-thioureido amino derivatives with different methylation levels were synthesised through easy synthetic routes to evaluate their antifungal properties against Candida species. Among all studied derivatives, the tri-(2-thioureido-ethyl)-amine (P1) was the most active compound inhibiting C. albicans and C. glabrata at a concentration of 0.49 mu g ml(-1); P3, the N,N `,N ``,N ```-hexamethyl-derivative, also showed inhibitory activity against C. albicans and C. glabrata, but in higher concentrations (250 mu g ml(-1)). The N,N `,N ``,N ```-tetramethylated amine (P5) only inhibited the growth of C. glabrata, but its corresponding N,N `,N ``,N ```-octamethyl derivative (P6) was also active against C. glabrata (125 mu g ml(-1)) and it was the only compound active against C. parapsilosis. P2 and P4 showed no significant antifungal activity. The structure-activity relationship of the thioureido-substituted derivatives indicates that the molecular branching and the alkylation levels can influence the antifungal activity. This study demonstrated that thioureido derivatives exhibited significant antifungal activity against Candida species and that they can be considered as a very promising bioactive lead compound to develop novel antifungal agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenotypic pressure exerted by non-steroidal anti-inflammatory drugs (NSAIDs) on autochthonous and pathogenic microbiota remains sparsely known. In this study, we investigated if some NSAIDs increment or diminish the secretion of aspartyl-proteases (Sap) by Candida albicans grown under different phenotypes and oxygen availability using a set of SAP knock-out mutants and other set for genes (EFG1 and CPH1) that codify transcription factors involved in filamentation and protease secretion. Preconditioned cells were grown under planktonic and biofilm phenotypes, in normoxia and anoxia, in the presence of plasma concentrations of acetylsalicylic acid, diclofenac, indomethacin, nimesulide, piroxicam, ibuprofen, and acetaminophen. For diclofenac, indomethacin, nimesulide, and piroxicam the secretion rates of Sap by SAP1-6, EFG1. and CPH1 mutants were similar or, even, inferior to parental wildtype strain. This suggests that neither Sap 1-6 isoenzymes nor Efg1/Cph1 pathways may be entirely responsible for protease release when exposed to these NSAIDs. Ibuprofen and acetaminophen enhanced Sap secretion rates in three environmental conditions (normoxic biofilm, normoxic planktonic and anoxic planktonic). In other hand, aspirin seems to reduce the Sap-related pathogenic behavior of candidal biofilms. Modulation of Sap activity may occur according to candidal phenotypic state, oxygen availability, and type of NSAID to which the cells are exposed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteinase-activated receptors (PAR) are widely recognized for their modulatory properties in inflammatory and immune responses; however, their direct role on phagocyte effector functions remains unknown. S100A9, a protein secreted during inflammatory responses, deactivates activated peritoneal macrophages, and its C-terminal portion inhibits spreading and phagocytosis of adherent peritoneal cells. Herein, the effect of PAR1 and PAR2 agonists was investigated on spreading and phagocytosis by adherent peritoneal cells, as well as the ability of murine C-terminal of S100A9 peptide (mS100A9p) to modulate this effect. Adherent peritoneal cells obtained from mouse abdominal cavity were incubated with PAR1 and PAR2 agonists and spreading and phagocytosis of Candida albicans particles were evaluated. PAR1 agonists increased both the spreading and the phagocytic activity, but PAR2 agonists only increased the spreading index. mS100A9p reverted both the increased spreading and phagocytosis induced by PAR1 agonists, but no interference in the increased spreading induced by PAR2 agonists was noticed. The shorter homologue peptide to the C-terminal of mS100A9p, corresponding to the H(92)-E(97) region, also reverted the increased spreading and phagocytosis induced by PAR1 agonists. These findings show that proteinase-activated receptors have an important role for spreading and phagocytosis of adherent peritoneal cells, and that the pepticle corresponding to the C-terminal of S100A9 protein is a remarkable candidate for use as a novel compound to modulate PAR1 function. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was addressed to investigate the composition and antifungal activity of essential oils from leaves of Piperaceae species (Piper aduncum, Piper amalago, Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper gaudichaudianum, Piper solmsianum, Piper regnellii, Piper tuberculatum, Piper umbelata and Peperomia obtusifolia) against Candida albicans, C. parapsilosis, C. krusei and Cryptococcus neoformans. The essential oils from P. aduncum, P. gaudichaudianum and P. solmsianum showed the highest antifungal activity against Cryptococcus neoformans with the MIC of 62.5, 62.5 and 3.9 mg.mL-1, respectively. The oil from P. gaudichaudianum showed activity against C. krusei with MIC of 31.25 mg.mL-1.